4月17日,中国工程院瞿金平院士团队采用工业化的微挤出压缩成型技术制备了一种具有三维互连开孔结构的微/纳结构聚乙烯/碳纳米管(MN-PCG)泡沫材料。该材料是一种新型淡水收集泡沫材料,该材料表面的三维纳/微米结构为微小水滴提供了充足的成核点以从潮湿空气中收集水分,在夜间实现了1451 mg cm -2 h -1的雾收集效率,同时具备良好的超疏水性、耐酸碱性、耐热性和主动/被动除冰性,这些特性能保证其在户外实际应用中长时间工作。他们提出的全天候淡水收集材料制备方法,为解决全球水资源短缺问题提供了一个良好的解决方案。相关研究成果日前发表在学术期刊《Small》上。
锂离子电池长期以来一直是储能的重点。本文,西安建筑大学Shuli Gao、陈长城 副教授等在《J. Phys. Chem. C》期刊发表名为“Twin-Graphene: A Promising Anode Material for Lithium-Ion Batteries with Ultrahigh Specific Capacity”的论文,研究采用第一性原理密度泛函理论方法研究了碳衍生结构作为锂离子电池负极的潜在应用。计算结果表明,修正的晶格常数、结构和参数与早期研究相似。值得注意的是,双石墨烯双层对锂有几个稳定的吸附位点。同时,发现原始双石墨烯半导体的特性在吸收锂后转变为金属性能。通过攀登图像推导弹性带计算,我们得到了双石墨烯上锂离子的0.42 eV介质扩散势垒,这表示强烈的扩散率。因此,它具有3916 mAh/g的超高理论容量,约为石墨烯(744 mAh/g)的5倍。双石墨烯双层锂离子电池的平均开路电压为0.32 V,保证了实际应用中的长使用寿命和快速充电。双石墨烯双层相对良好的导电性和稳定性在整个充放电操作中得到了进一步证明。由于上述原因,双石墨烯双层将是可以应用的优秀电池阳极。
积冰导致的安全问题对人类生活构成了很大的威胁,而现有涂层的耐磨性差,导热性差限制了防冰涂层的广泛应用。在此,瑞典吕勒奥工业大学(Luleå University of Technology)史以俊团队将石墨烯引入树脂涂层得到一种石墨烯增强的耐磨导热防冰涂层。具体地,将石墨烯复合到树脂涂层中,利用石墨烯优异的导热性来改善复合涂层的导热能力,使其能应用在现有加热除冰材料的表面。石墨烯独特的2D层状结构,可以降低磨损过程中磨粒对涂层的破坏,提升的涂层的抗磨损能力,从而延长使用寿命。结果显示,当石墨烯的质量分数约为8%时,复合涂层具有最佳的机械性能,高的热导率和低的磨损深度。此外,石墨烯的引入促使表面形成了有效的微纳结构,延长了冰的成核时间,降低了冰在涂层表面的黏附强度。同时还对比了氮化硼作为导热耐磨填料对复合涂层性能的影响。本研究中的具有出色耐磨性能和导热性能的防冰涂层,对于各种除冰场合具有极大的应用前景。
超导这一宏观量子现象最早由荷兰科学家H. K. Onnes于1911年在研究汞在低温下的电学输运性质时被首次观察到,是凝聚态物理学中里程碑式的发现之一,有关超导材料和超导机理的研究是物理学及相关领域研究中经久不衰的课题。石墨烯的高质量二维电子系统是一个高度可调的平台,能够用于研究超导性。特别是,在电子和空穴掺杂的扭曲石墨烯莫尔系统中已经观察到了超导性,而在结晶石墨烯系统中,超导性迄今为止仅在空穴掺杂的菱形三层石墨烯(RTG)和空穴掺杂的伯纳尔双层石墨烯(BBG)中观察到。然而,石墨烯涡流系统和晶体石墨烯系统中超导的具体配对机制仍然是一个正在进行的研究课题。另一方面,在结晶石墨烯中,虽然在传导带(CB)和价带(VB)中都观察到相互作用驱动的风味对称性破坏相,但迄今为止只在VB中观察到超导性。
利用基底直接在目标上生长石墨烯化学气相沉积(CVD)是实现石墨烯应用的重要途径。然而,基底通常为催化惰性且形状特殊,因此大规模、高均匀性和高质量的石墨烯生长具有挑战性。本文,北京大学与北京石墨烯研究院刘忠范-亓月课题组《 J. Am. Chem. Soc》期刊发表名为“Fluid-Dynamics-Rectified Chemical Vapor Deposition (CVD) Preparing Graphene-Skinned Glass Fiber Fabric and Its Application in Natural Energy Harvest”的论文,研究通过在玻璃纤维织物(一种广泛使用的工程材料)上进行石墨烯 CVD 生长,开发出了石墨烯蒙烯玻璃纤维织物(GGFF)。首先提出了一种流体动力学整流策略,以协同调节碳物种在三维空间中的分布及其与分层结构基底的碰撞,从而在大规模三维编织物中实现高质量石墨烯在纤维上的高度均匀沉积。这种策略具有通用性,适用于使用各种碳前驱体的 CVD 系统。GGFF 具有高导电性和光热转换能力,在此基础上首次开发出一种自然能源收集器。它既能收集太阳能,也能收集雨滴能。